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Abstract

Summary: In this article, we present IntelliGenes, a novel machine learning (ML) pipeline for the multi-genomics exploration to discover bio-
markers significant in disease prediction with high accuracy. IntelliGenes is based on a novel approach, which consists of nexus of conventional
statistical techniques and cutting-edge ML algorithms using multi-genomic, clinical, and demographic data. IntelliGenes introduces a new metric,
i.e. Intelligent Gene (I-Gene) score to measure the importance of individual biomarkers for prediction of complex traits. I-Gene scores can be uti-
lized to generate I-Gene profiles of individuals to comprehend the intricacies of ML used in disease prediction. IntelliGenes is user-friendly, porta-
ble, and a cross-platform application, compatible with Microsoft Windows, macOS, and UNIX operating systems. IntelliGenes not only holds the
potential for personalized early detection of common and rare diseases in individuals, but also opens avenues for broader research using novel
ML methodologies, ultimately leading to personalized interventions and novel treatment targets.

Availability and implementation: The source code of IntelliGenes is available on GitHub (https://github.com/drzeeshanahmed/intelligenes) and

Code Ocean (https://codeocean.com/capsule/8638596/tree/v1).

1 Introduction

Multi-genomic data, including whole genome sequencing
(WGS) and RNA-seq of transcribed genes, informs us of a
patient’s inherent genetic makeup with the most comprehen-
sive view of the genome (Zeeshan et al. 2020). WGS-based
gene variant detection when combined with RNA-seq-driven
gene expression, and clinical and demographic information
has the potential to reveal novel and sensitive biomarkers and
stratify patient populations based on their disease risk
(Vadapalli et al. 2022). To improve the deciphering of com-
mon and rare disease factors, we need to deeply investigate
known and identify novel genes that are responsible for the
development of disease. Gene Expression Analysis (GEA) and
Genome-wide association studies (GWAS) have remarkably
assisted in understanding the genetic basis of human disease
by uncovering millions of loci associated with various com-
plex phenotypes (Visscher et al. 2017). However, these are
unable to identify multi-genomic profile-based biomarkers
and predict disease at high accuracy. These limitations are not
exclusive to GWAS and GEA, as no method or technology to
date can identify all the genetic components of complex traits
(Altshuler et al. 2008). In addition, a persistent challenge in

multi-genomic data analysis lies in the handling, integration,
and standardization of large volumes of sequencing data.
Several multi-genomics approaches demonstrate the potential
of investigating genes associated with disease. However, the
current and still unresolved challenges include the unavailabil-
ity of bioinformatics and biostatistics applications to greatly
enhance the performance of analysis as well as understand
the dimensions and complexity of multi-genomics data
(Ahmed 2022).

Studying genetic insight with the application of Artificial
Intelligence (AI), Machine Learning (ML), and state-of-the-art
bioinformatics approaches will improve the processes of dis-
covering disease causing variants and decode genetics of com-
plex phenotypes to predict, prevent, and treat complex
diseases. These can play a vital role in the recognition, extrac-
tion, and prediction of nonlinear structures and biological
patterns, which can decode the genetics of complex pheno-
types (Ahmed ef al. 2020). This will support discovering
genotype-phenotype associations by linking multi-genomic,
clinical, and demographic data. ML offers multiple supervised
and unsupervised algorithms, which can be used to analyze
multi-genomic, clinical, and demographic data with the po-
tential for learning from a continuum of dataset displaying
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heterogeneous levels of granularity. However, the important
question here is, which ML algorithm is appropriate for a
proposed clinical/scientific problem? Choosing the right ML
model can have a huge impact on the accuracy of the pre-
dicted outcome and biomarker discovery. Classifying tasks
based on available predictor variables can be a key step to
correctly addressing the problem of choosing a suitable ML
algorithm (Ahmed ef al. 2020, Vadapalli et al. 2022).

Recently, we have published an important study in the
Briefing in Bioinformatics (Vadapalli et al. 2022), reporting
evaluation and comparative analysis of various ML
approaches using the gene-variant and expression data for
statistical and predictive analysis of a wide variety of disor-
ders. Our study concluded that the Support Vector Machine
(SVM) and Random Forest (RF) are the most applied and suc-
cessful ML algorithms used to make high accuracy predic-
tions and solve regression and classification problems. The
major differences between these two include adjusting hyper-
parameters (a parameter whose value is used to control the
learning process) in SVM to prevent over and underfitting
compared to no adjustment in RF. SVM has been imple-
mented to distinguish genetic susceptibility factors and iden-
tify previously unknown features that corresponded to
common disease (Isakov et al. 2017, Maniruzzaman et al.
2019), when RF has been applied to identify differentially
expressed genes played an important role in disease prognosis
by acting as a potential biomarker (Kegerreis et al. 2019,
Schaack et al. 2021, Zhao et al. 2021). Other than these two
algorithms, we found that some other widely used approaches
and that include Xtreme Gradient Boosting Decision Trees
(XGBoost), Logistic regression (LR), Naive Bayes, Decision
tree, Artificial neural network, k-nearest neighbor (k-NN),
and Analysis of Variance (ANOVA), Adaboost, Gradient
Boosting, Linear discriminant analysis, Quadratic discrimi-
nant analysis, Gaussian process classification, and Clustering
(Vadapalli et al. 2022). These approaches are suitable for
solving different kinds of data analytic problems and predic-
tive analysis using genomic data of variable types and sizes
(Vadapalli et al. 2022). However, there is no single peer
reviewed approach, which can fit for all or at least suitable
for multiple situations. An ML pipeline, assembling appropri-
ate statistical and ML approaches can be a solution to over-
come the limitations of singular approaches.

2 Materials and methods

In this article, we propose a novel ML approach that involves
harnessing transcriptomic data, along with demographic and
clinical information (Fig. 1). We have designed and developed
a new ML pipeline, i.e. IntelliGenes, that employs a unique
combination of classical statistical methods and state-of-the-
art ML algorithms to identify novel biomarkers and predict
disease in individuals. Using a nexus of ML algorithms, our
approach can uncover information that usually goes unde-
tected by classical statistics and traditional bioinformatics
techniques. Input to the overall methodology is the AI/ML
ready data in the Clinically Integrated Genomics and
Transcriptomics (CIGT) format, including information about
patient’s age, gender, racial and ethnic background, diagno-
ses, and RNA-seq driven gene expression data. These attrib-
utes have proven to be ideal for the development of studies
integrating genotype and phenotype (Wilczewski et al. 2023).
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We implemented three classical statistics (Pearson correla-
tion, Chi-square test, and ANOVA) and one ML classifier
(Recursive Feature Elimination) to extract significant disease-
associated biomarkers from a patient cohort. Then, seven ML
classifiers (RF, SVM, XGBoost, k-NN, Multi-Layer
Perceptron, a soft voting classifier, and a hard voting classi-
fier) are applied to compute top percentage (e.g. 10%) profiles
of multi-genomic data-based profiles and rank them to predict
a diagnosis, in a unique patient, with the highest accuracy.
Just as with our selection algorithms, users have the flexibility
to combine various classifiers to tailor their ideal methodol-
ogy. Disease prediction with IntelliGenes requires a list of
biomarkers and a training dataset to make patient predic-
tions. The resulting output includes individual patient predic-
tions, various classifier metrics, and customizable user
visualizations.

IntelliGenes introduces the novel metric of I-Gene Score
that measures the importance of individual biomarkers to dis-
ease prediction. Calculating I-Genes Score is the fundamental
component of IntelliGenes, fully categorizing a transcriptomic
feature’s role in a disease. Using Shapley Additive
exPlanations (SHAP) and Herfindahl-Hirschman Indexes
(HHI), I-Genes Scores determine the weighted usefulness of
biomarkers and characterize their expression in biological sys-
tems. The SHAP values assign importance to the features used
in disease prediction, and HHI weighs classifiers’ reliance on
individual high-impact biomarkers. Classifiers, where fewer
biomarkers are responsible for high-accuracy predictions, re-
ceive a greater weight downstream. SHAP scores normalize
and aggregate according to these weights, resulting in our
I-Gene score. For example, the SHAP importance of bio-
markers in classifiers where a sole biomarker is responsible
for predictions will be given more weight in the final I-Gene
score calculation. HHI measures concentration, differing
from methods like the Gini coefficient, which measures in-
equality. Examining concentration more accurately captures
the patterns in which classifiers make disease predictions.
HHI weights are multiplied to normalized importance, which
is then summed across all classifiers in the ensemble model for
each feature. I-Gene score-based profiles contain the direction
of a gene’s expression in a disease. Using SHAP once, we can
examine what types of features contribute to positive disease
classifications. If attributes contributing positively to these
classifications are typically lower in control patients than case
patients, we deem that feature overexpressed.

The I-Gene score includes directionality, helping research-
ers utilizing IntelliGenes understand if biomarker overexpres-
sion or under expression contributes to disease. IntelliGenes
is user-friendly, portable, and a cross-platform application,
compatible to Microsoft Windows, macOS, and UNIX oper-
ating systems. IntelliGenes and its prerequisites can be readily
deployed via GitHub or the Python Package Index (PyPI),
with a preference for the utilization of our GitHub repository.
It necessitates a Python version from 3.6 to 3.11 for proper
functionality. IntelliGenes has been meticulously engineered
to exhibit efficiency and adaptability, rendering it amenable
for deployment on a spectrum ranging from personal comput-
ing devices to high-performance computing environments. Its
functionality is contingent upon the utilization of multiple
Python packages (“pandas,” “numpy,” “scikit-learn,”
“xgboost,” “shap,” “matplotlib,” “scipy”). Further details of
IntelliGenes’ s methodology are available in Supplementary
Material S1, attached. The source code of IntelliGenes is
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Figure 1. IntelliGenes methodology.

publicly shared using GitHub and Code Ocean. To facilitate a
better understanding of how to use. IntelliGenes, a user guide
discusses resources on how to get started in Supplementary
Material S2.

3 Results

The outcome of IntelliGenes includes the visual representa-
tions of SHAP values. Automated summary plots are gener-
ated representing the range of importance on the x-axis;
near-zero SHAP values denote negligible impacts on predic-
tive capabilities, negatively scored SHAP features help predict
control patients, and positively scored features are efficient
predictors of disease. In Supplementary Material S2, we have
added examples results using a test dataset, which mainly
reports ENSG00000139644 (TMBIMS6) as a valuable predic-
tor found for cases at low expression levels among patients
with cardiovascular diseases (CVDs) and controls at high lev-
els. In this biomarker’s I-Genes Profile, the feature is marked
is underexpressed. In addition, we have reported a study
(DeGroat et al. 2023a), where using IntelliGenes’ s methodol-
ogy we have been able to discover novel biomarkers associ-
ated and predict CVDs with high accuracy. We have
uncovered 18 transcriptomic biomarkers that are highly sig-
nificant in the CVD population that were used to predict dis-
ease with up to 96 % accuracy (DeGroat et al. 2023a).

4 Discussion

The development of an ML predictive engine that utilizes ge-
netic biomarkers to assess the risk of complex disease in
patients is still in its early stages. Despite the rapidly advanc-
ing interest in ML and the growing usage, there are no stan-
dard applications or tools available for nonexpert users
especially without any computational backgrounds. Scientific
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researchers who wish to practice ML algorithms and create
smarter biomedical solutions do not have applications to
guide them in incorporating multi-genomic, clinical, and de-
mographic data together for accurate research outcomes.
Also, the use of single algorithm versus a combination of algo-
rithms is another challenge to consider for more accurate
results. We need ML applications for disease prediction, using
diagnosis-pertinent biomarkers to discover a patient’s status
using an ensemble of classifiers.

To predict disease with high accuracy, we first developed
an ML application, i.e. Hygieia (DeGroat et al. 2023b). It is
based on the RF for regression analysis and prediction with-
out requiring hyperparameter tuning. We implemented the
RF algorithm because in our comparative analysis and review
study to investigate ML approaches using multi-genomic data
(Vadapalli et al. 2022), we proved that it has been preferred
over other models, especially when applied to relatively small
datasets. We applied Hygieia to our AI/ML ready dataset,
which was based on RNA-seq driven gene-expression, clinical
and demographic data of patients with CVDs (Venkat et al.
2023). During our ML analysis using Hygieia, visible data
clusters were observed for the genes highly correlated, down-
regulated and with altered expression in CVD patients com-
pared to healthy individuals (Venkat ez al. 2023). During our
predictive analysis, we uncovered an interesting correlation
between age, gender, race, and CVD diagnoses. We observed
that age and gender appeared to have a high correlation in
HF, while age and race were highly correlated in AF (Venkat
et al. 2023). Our model was able to correctly classify individ-
uals as CVD patients and predict CVDs with 95% accuracy.
However, the scope of Hygieia was limited to the targeted dis-
ease specific genes, which we have overcome with the devel-
opment of IntelliGenes, as it can analyze the complete
transcriptome of patients based on the RNA-seq drive gene
expression values. Molecular testing of these observations in
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independent experiments/patient populations and following
up on their function with wet lab experimentation will lend
credit, passing the extra line of validation.

IntelliGenes is a Findable, Accessible, Intelligent, and
Reproducible (FAIR) ML pipeline with a unique combination
of classical statistical methods and state-of-the-art ML algo-
rithms to identify novel biomarkers and predict diseases. By
integrating these approaches, we outperformed single algo-
rithms, resulting in enhanced accuracy, deeper insights, and
more precise predictions, essential for personalized early
disease-risk detection in individuals. Through the convergence
of statistical algorithms and machine learning classifiers,
IntelliGenes offers high-accuracy, modular disease prediction
and classification, enabling the discovery of novel disease-
associated biomarkers and the development of gene-disease
networks. It does not only hold the potential for personalized
early detection of common and rare diseases in individuals,
but also opens avenues for broader research using novel ML
methodologies, ultimately leading to personalized interven-
tions and novel treatment targets. Multiclass classification
tasks require novel methodologies; we suggest that integrating
patient demographics, transcriptomics, variants, and epige-
nomics can facilitate an unsupervised clustering approach
that will allow us to map diseases onto patients through the
extraction of these clusters’ most important features. In fu-
ture, we look forward to improving our methodology by cu-
rating an unsupervised learning study that removes the labels
to indicate status of health and allow the computer to cluster
data points based on integrated gene expression and variant
data along with clinical, demographics, and longitudinal
data.
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